Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(3-1): 034201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632749

RESUMO

We report on high-precision measurements that were performed with superconducting waveguide networks with the geometry of a tetrahedral and a honeycomb graph. They consist of junctions of valency three that connect straight rectangular waveguides of equal width but incommensurable lengths. The experiments were performed in the frequency range of a single transversal mode, where the associated Helmholtz equation is effectively one-dimensional and waveguide networks may serve as models of quantum graphs with the joints and waveguides corresponding to the vertices and bonds. The tetrahedral network comprises T junctions, while the honeycomb network exclusively consists of Y junctions, that join waveguides with relative angles 90^{∘} and 120^{∘}, respectively. We demonstrate that the vertex scattering matrix, which describes the propagation of the modes through the junctions, strongly depends on frequency and is nonsymmetric at a T junction and thus differs from that of a quantum graph with Neumann boundary conditions at the vertices. On the other hand, at a Y junction, similarity can be achieved in a certain frequency range. We investigate the spectral properties of closed waveguide networks and fluctuation properties of the scattering matrix of open ones and find good agreement with random matrix theory predictions for the honeycomb waveguide graph.

2.
Phys Rev E ; 108(4-1): 044211, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978640

RESUMO

We report on an experimental investigation of the transition of a quantum system with integrable classical dynamics to one with violated time-reversal (T) invariance and chaotic classical counterpart. High-precision experiments are performed with a flat superconducting microwave resonator with circular shape in which T-invariance violation and chaoticity are induced by magnetizing a ferrite disk placed at its center, which above the cutoff frequency of the first transverse-electric mode acts as a random potential. We determine a complete sequence of ≃1000 eigenfrequencies and find good agreement with analytical predictions for the spectral properties of the Rosenzweig-Porter (RP) model, which interpolates between Poisson statistics expected for typical integrable systems and Gaussian unitary ensemble statistics predicted for chaotic systems with violated Tinvariance. Furthermore, we combine the RP model and the Heidelberg approach for quantum-chaotic scattering to construct a random-matrix model for the scattering (S) matrix of the corresponding open quantum system and show that it perfectly reproduces the fluctuation properties of the measured S matrix of the microwave resonator.

3.
Phys Rev E ; 107(5-1): 054210, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37328966

RESUMO

We study the elastic enhancement factor and the two-point correlation function of the scattering matrix obtained from measurements of reflection and transmission spectra of a three-dimensional (3D) wave-chaotic microwave cavity in regions of moderate and large absorption. They are used to identify the degree of chaoticity of the system in the presence of strongly overlapping resonances, where other measures such as short- and long-range level correlations cannot be applied. The average value of the experimentally determined elastic enhancement factor for two scattering channels agrees well with random-matrix theory predictions for quantum chaotic systems, thus corroborating that the 3D microwave cavity exhibits the features of a fully chaotic system with preserved time-reversal invariance. To confirm this finding we analyzed spectral properties in the frequency range of lowest achievable absorption using missing-level statistics.


Assuntos
Micro-Ondas , Vibração
4.
Entropy (Basel) ; 25(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37238517

RESUMO

Rectangular billiards have two mirror symmetries with respect to perpendicular axes and a twofold (fourfold) rotational symmetry for differing (equal) side lengths. The eigenstates of rectangular neutrino billiards (NBs), which consist of a spin-1/2 particle confined through boundary conditions to a planar domain, can be classified according to their transformation properties under rotation by π (π/2) but not under reflection at mirror-symmetry axes. We analyze the properties of these symmetry-projected eigenstates and of the corresponding symmetry-reduced NBs which are obtained by cutting them along their diagonal, yielding right-triangle NBs. Independently of the ratio of their side lengths, the spectral properties of the symmetry-projected eigenstates of the rectangular NBs follow semi-Poisson statistics, whereas those of the complete eigenvalue sequence exhibit Poissonian statistics. Thus, in distinction to their nonrelativistic counterpart, they behave like typical quantum systems with an integrable classical limit whose eigenstates are non-degenerate and have alternating symmetry properties with increasing state number. In addition, we found out that for right triangles which exhibit semi-Poisson statistics in the nonrelativistic limit, the spectral properties of the corresponding ultrarelativistic NB follow quarter-Poisson statistics. Furthermore, we analyzed wave-function properties and discovered for the right-triangle NBs the same scarred wave functions as for the nonrelativistic ones.

5.
Phys Rev E ; 107(2-1): 024203, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932527

RESUMO

We report on experimental studies of the distribution of the reflection coefficients, and the imaginary and real parts of Wigner's reaction (K) matrix employing open microwave networks with symplectic symmetry and varying size of absorption. The results are compared to analytical predictions derived for the single-channel scattering case within the framework of random-matrix theory (RMT). Furthermore, we performed Monte Carlo simulations based on the Heidelberg approach for the scattering (S) and K matrix of open quantum-chaotic systems and the two-point correlation function of the S-matrix elements. The analytical results and the Monte Carlo simulations depend on the size of absorption. To verify them, we performed experiments with microwave networks for various absorption strengths. We show that deviations from RMT predictions observed in the spectral properties of the corresponding closed quantum graph and attributed to the presence of nonuniversal short periodic orbits does not have any visible effects on the distributions of the reflection coefficients and the K and S matrices associated with the corresponding open quantum graph.

6.
Entropy (Basel) ; 25(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36673238

RESUMO

We study the dynamical generation of entanglement for a two-body interacting system, starting from a separable coherent state. We show analytically that in the quasiclassical regime the entanglement growth rate can be simply computed by means of the underlying classical dynamics. Furthermore, this rate is given by the Kolmogorov-Sinai entropy, which characterizes the dynamical complexity of classical motion. Our results, illustrated by numerical simulations on a model of coupled rotators, establish in the quasiclassical regime a link between the generation of entanglement, a purely quantum phenomenon, and classical complexity.

7.
Phys Rev E ; 106(4-1): 044209, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397497

RESUMO

We report on experiments that were performed with microwave waveguide systems and demonstrate that in the frequency range of a single transversal mode they may serve as a model for closed and open quantum graphs. These consist of bonds that are connected at vertices. On the bonds, they are governed by the one-dimensional Schrödinger equation with boundary conditions imposed at the vertices. The resulting transport properties through the vertices may be expressed in terms of a vertex scattering matrix. Quantum graphs with incommensurate bond lengths attracted interest within the field of quantum chaos because, depending on the characteristics of the vertex scattering matrix, its wave dynamic may exhibit features of a typical quantum system with chaotic counterpart. In distinction to microwave networks, which serve as an experimental model of quantum graphs with Neumann boundary conditions, the vertex scattering matrices associated with a waveguide system depend on the wave number and the wave functions can be determined experimentally. We analyze the spectral properties of microwave waveguide systems with preserved and partially violated time-reversal invariance, and the properties of the associated wave functions. Furthermore, we study properties of the scattering matrix describing the measurement process within the framework of random matrix theory for quantum chaotic scattering systems.

8.
Phys Rev E ; 106(1-1): 014211, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974604

RESUMO

We present experimental and numerical results for the fluctuation properties in the eigenfrequency spectra and of the scattering matrix of closed and open unidirectional quantum graphs, respectively. Unidirectional quantum graphs, that are composed of bonds connected by reflectionless vertices, were introduced by Akila and Gutkin [Akila and Gutkin, J. Phys. A: Math. Theor. 48, 345101 (2015)1751-811310.1088/1751-8113/48/34/345101]. The nearest-neighbor spacing distribution of their eigenvalues was shown to comply with random-matrix theory predictions for typical chaotic systems with completely violated time-reversal invariance. The occurrence of short periodic orbits confined to a fraction of the system, that lead in conventional quantum graphs to deviations of the long-range spectral correlations from the behavior expected for typical chaotic systems, is suppressed in unidirectional ones. Therefore, we pose the question whether such graphs may serve as a more appropriate model for closed and open chaotic systems with violated time-reversal invariance than conventional ones. We compare the fluctuation properties of their eigenvalues and scattering matrix elements and observe especially in the long-range correlations larger deviations from random-matrix theory predictions for the unidirectional graphs. These are attributed to a loss of complexity of the underlying dynamic, induced by the unidirectionality.

9.
Phys Rev Lett ; 127(20): 203901, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860038

RESUMO

We report on experiments with Möbius strip microlasers, which were fabricated with high optical quality by direct laser writing. A Möbius strip, i.e., a band with a half twist, exhibits the fascinating property that it has a single nonorientable surface and a single boundary. We provide evidence that, in contrast to conventional ring or disk resonators, a Möbius strip cavity cannot sustain whispering gallery modes (WGM). Comparison between experiments and 3D finite difference time domain (FDTD) simulations reveals that the resonances are localized on periodic geodesics.

10.
Phys Rev E ; 103(5-1): 052204, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134203

RESUMO

We report on the experimental investigation of the fluctuation properties in the resonance frequency spectra of a flat resonator simulating a dissipative quantum billiard subject to partial time-reversal-invariance violation (TIV) which is induced by two magnetized ferrites. The cavity has the shape of a quarter bowtie billiard of which the corresponding classical dynamics is chaotic. Due to dissipation it is impossible to identify a complete list of resonance frequencies. Based on a random-matrix theory approach we derive analytical expressions for statistical measures of short- and long-range correlations in such incomplete spectra interpolating between the cases of preserved time-reversal invariance and complete TIV and demonstrate their applicability to the experimental spectra.

11.
Phys Rev E ; 103(5-1): 052209, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134298

RESUMO

We present an in-depth study of the universal correlations of scattering-matrix entries required in the framework of nonstationary many-body scattering of noninteracting indistinguishable particles where the incoming states are localized wave packets. Contrary to the stationary case, the emergence of universal signatures of chaotic dynamics in dynamical observables manifests itself in the emergence of universal correlations of the scattering matrix at different energies. We use a semiclassical theory based on interfering paths, numerical wave function based simulations, and numerical averaging over random-matrix ensembles to calculate such correlations and compare with experimental measurements in microwave graphs, finding excellent agreement. Our calculations show that the universality of the correlators survives the extreme limit of few open channels relevant for electron quantum optics, albeit at the price of dealing with large-cancellation effects requiring the computation of a large class of semiclassical diagrams.

12.
Phys Rev E ; 103(4-1): 042212, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005854

RESUMO

We present experimental and theoretical results for the fluctuation properties in the incomplete spectra of quantum systems with symplectic symmetry and a chaotic dynamics in the classical limit. To obtain theoretical predictions, we extend the random-matrix theory (RMT) approach introduced in Bohigas and Pato [O. Bohigas and M. P. Pato, Phys. Rev. E 74, 036212 (2006)PLEEE81539-375510.1103/PhysRevE.74.036212] for incomplete spectra of quantum systems with orthogonal symmetry. We validate these RMT predictions by randomly extracting a fraction of levels from complete sequences obtained numerically for quantum graphs and experimentally for microwave networks with symplectic symmetry and then apply them to incomplete experimental spectra to demonstrate their applicability. Independently of their symmetry class, quantum graphs exhibit nongeneric features which originate from nonuniversal contributions. Part of the associated eigenfrequencies can be identified in the level dynamics of parameter-dependent quantum graphs and extracted, thereby yielding spectra with systematically missing eigenfrequencies. We demonstrate that, even though the RMT approach relies on the assumption that levels are missing at random, it is possible to determine the fraction of missing levels and assign the appropriate symmetry class by comparison of their fluctuation properties with the RMT predictions.

13.
Phys Rev E ; 102(4-1): 042206, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212639

RESUMO

We report on the experimental investigation of the dependence of the elastic enhancement, i.e., enhancement of scattering in the backward direction over scattering in other directions, of a wave-chaotic system with partially violated time-reversal (T) invariance on its openness. The elastic enhancement factor is a characteristic of quantum chaotic scattering which is of particular importance in experiments, like compound-nuclear reactions, where only cross sections, i.e., the moduli of the associated scattering matrix elements, are accessible. In the experiment a quantum billiard with the shape of a quarter bow tie, which generates a chaotic dynamics, is emulated by a flat microwave cavity. Partial T-invariance violation of varying strength 0≤ξ≲1 is induced by two magnetized ferrites. The openness is controlled by increasing the number M of open channels, 2≤M≤9, while keeping the internal absorption unchanged. We investigate the elastic enhancement as function of ξ and find that for a fixed M it decreases with increasing T-invariance violation, whereas it increases with increasing openness beyond a certain value of ξ≳0.2. The latter result is surprising because it is opposite to that observed in systems with preserved Tinvariance (ξ=0). We come to the conclusion that the effect of T-invariance violation on the elastic enhancement then dominates over the openness, which is crucial for experiments which rely on enhanced backscattering, since, generally, a decrease of the openness is unfeasible. Motivated by these experimental results, we performed theoretical investigations based on random matrix theory which confirm our findings.

14.
Phys Rev E ; 102(4-1): 042214, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212672

RESUMO

The impact of the classical dynamic on the fluctuation properties in the eigenvalue spectrum of nonrelativistic quantum billiards (QBs) are now well understood based on the semiclassical approach which provides an approximation for the fluctuating part ρ^{fluc}(k) of the spectral density in terms of a trace formula, that is, a sum over classical periodic orbits of its classical counterpart, abbreviated as CB. This connection between the eigenvalue spectrum of a quantum system and the classical periodic orbits is discernible in the Fourier transform of ρ^{fluc}(k) from eigenwave number k to length, which exhibits peaks at the lengths of the periodic orbits. The uprise of interest in properties of graphene related to their relativistic Dirac spectrum implicated the emergence of intensive studies of relativistic neutrino billiards (NBs), consisting of a spin-1/2 particle governed by the Dirac equation and confined to a bounded planar domain. In distinction to QBs, NBs do not have a well-defined classical limit. Yet comparison of their length spectra showed that for massless spin-1/2 particles those of the NB exhibit peaks at positions corresponding to the lengths of periodic orbits with an even number of reflections at the boundary of the CB associated with the corresponding QB. In order to understand the transition from the relativistic to the nonrelativistic regime, we derive an exact quantization condition for massive NBs and use it to obtain a trace formula. This trace formula provides a direct link between the spectral density of a NB and the classical dynamic of the corresponding QB through the periodic orbits of the associated CB.

15.
Phys Rev E ; 102(2-1): 022309, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942473

RESUMO

We present experimental and numerical results for the parametric fluctuation properties in the spectra of classically chaotic quantum graphs with unitary or symplectic symmetry. A level dynamics is realized by changing the lengths of a few bonds parametrically. The long-range correlations in the spectra reveal at a fixed parameter value deviations from those expected for generic chaotic systems with corresponding universality class. They originate from modes which are confined to individual bonds or explore only a fraction of the quantum graph. Similarly, discrepancies are observed in the avoided-crossing distribution, velocity correlation function, and the curvature distribution of the level dynamics which also may be attributed to such localized modes. We demonstrate that these may be easily identified by inspecting the level dynamics and consequently their nonuniversal contributions to the parametric spectral properties may be diminished considerably. This is corroborated by numerical studies.

16.
Phys Rev E ; 101(3-1): 032215, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289993

RESUMO

"Can one hear the shape of a drum?" Kac raised this famous question in 1966, referring to the possibility of the existence of nonisometric planar domains with identical Dirichlet eigenvalue spectra of the Laplacian. Pairs of nonisometric isospectral billiards were eventually found by employing the transplantation method which was deduced from Sunada's theorem. Our main focus is the question to what extent isospectrality of nonrelativistic quantum billiards is present in the corresponding relativistic case, i.e., for massless spin-1/2 particles governed by the Dirac equation and confined to a domain of corresponding shape by imposing boundary conditions on the wave function components. We consider those for neutrino billiards [Berry and Mondragon, Proc. R. Soc. London A 412, 53 (1987)2053-916910.1098/rspa.1987.0080] and demonstrate that the transplantation method fails and thus isospectrality is lost when changing from the nonrelativistic to the relativistic case. To confirm this we compute the eigenvalues of pairs of neutrino billiards with the shapes of various billiards which are known to be isospectral in the nonrelativistic limit. Furthermore, we investigate their spectral properties, in particular, to find out whether not only their eigenvalues but also the fluctuations in their spectra and their length spectra differ.

17.
Phys Rev E ; 100(1-1): 012210, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31499840

RESUMO

A characteristic of chaotic scattering is the excess of elastic over inelastic scattering processes quantified by the elastic enhancement factor F_{M}(T,γ), which depends on the number of open channels M, the average transmission coefficient T, and internal absorption γ. Using a microwave cavity with the shape of a chaotic quarter-bow-tie billiard, we study the elastic enhancement factor experimentally as a function of the openness, which is defined as the ratio of the Heisenberg time and the Weisskopf (dwell) time and is directly related to M and the size of internal absorption. In the experiments 2≤M≤9 open channels with an average transmission coefficient 0.34

18.
Phys Rev Lett ; 119(24): 244102, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29286742

RESUMO

The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.

19.
Clin J Oncol Nurs ; 21(4): 438-445, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28738039

RESUMO

BACKGROUND: Given the high-risk nature and nurse sensitivity of chemotherapy infusion and extravasation prevention, as well as the absence of an industry benchmark, a group of nurses studied oncology-specific nursing-sensitive indicators. 
. OBJECTIVES: The purpose was to establish a benchmark for the incidence of chemotherapy extravasation with vesicants, irritants, and irritants with vesicant potential.
. METHODS: Infusions with actual or suspected extravasations of vesicant and irritant chemotherapies were evaluated. Extravasation events were reviewed by type of agent, occurrence by drug category, route of administration, level of harm, follow-up, and patient referrals to surgical consultation.
. FINDINGS: A total of 739,812 infusions were evaluated, with 673 extravasation events identified. Incidence for all extravasation events was 0.09%.


Assuntos
Antineoplásicos/efeitos adversos , Institutos de Câncer/organização & administração , Extravasamento de Materiais Terapêuticos e Diagnósticos/epidemiologia , Neoplasias/tratamento farmacológico , Antineoplásicos/administração & dosagem , Humanos , Incidência , Neoplasias/enfermagem
20.
Phys Rev E ; 95(5-1): 052202, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28618543

RESUMO

We present experimental and numerical results for the long-range fluctuation properties in the spectra of quantum graphs with chaotic classical dynamics and preserved time-reversal invariance. Such systems are generally believed to provide an ideal basis for the experimental study of problems originating from the field of quantum chaos and random matrix theory. Our objective is to demonstrate that this is true only for short-range fluctuation properties in the spectra, whereas the observation of deviations in the long-range fluctuations is typical for quantum graphs. This may be attributed to the unavoidable occurrence of short periodic orbits, which explore only the individual bonds forming a graph and thus do not sense the chaoticity of its dynamics. In order to corroborate our supposition, we performed numerous experimental and corresponding numerical studies of long-range fluctuations in terms of the number variance and the power spectrum. Furthermore, we evaluated length spectra and compared them to semiclassical ones obtained from the exact trace formula for quantum graphs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...